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Abstract
Root-lesion nematodes of the genus Pratylenchus are among the most important nematode pests that limit production of

small-grain cereals. Four Pratylenchus species, viz. P. thornei, P. neglectus, P. penetrans, and P. crenatus, are considered

of major economic significance in cereals of which P. thornei and P. neglectus are the most important and widely

distributed species in cereal crops worldwide. However, P. thornei is more destructive causing estimated yield losses of up

to 50% in the USA and 85% in Australia. This paper provides information regarding the global distribution of Pratylenchus

species, yield loss due to their attack, their biology and pathogenic relation to plants, the research cutting edges in

nematode identification of different Pratylenchus species, and their control through cultural practices and resistant varieties

as correct identification of root-lesion nematodes can be difficult to achieve, particularly if a quick diagnosis is needed. In

this context, in recent years, several molecular techniques for these Pratylenchus species have been developed such as

quantitative PCR assays which are able to produce precise and rapid identification of several root-lesion nematodes species.

So far, many global attempts have been made to control root-lesion nematodes in cereals, including cultural practices and

development of resistant varieties. The use of resistant accessions is considered the most economically feasible and

environmentally sustainable method. Resistance genes in several lines have been identified and are being used in numerous

breeding programmes against root-lesion nematodes species.
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The importance of cereals and associated
root-lesion nematodes

Small-grain cereals include wheat, barley, oats, rye, triti-

cale, rice, and other species that constitute the world’s most

important source of food. This is due to their great adapt-

ability, permitting successful colonization in every type of

ecological habitat, relative ease of cultivation, tillering

habit giving higher yield per unit area, and good nutritive

values (Vasil 1999). These crops supply 20% of calories

and account for more than half of all harvested crop areas

in the world (Dababat et al. 2015). About 70% of land

devoted to crops production is planted by cereals. Current

production levels and trends will not be sufficient to fulfil

the projected global demand generated by increasing pop-

ulations (Ray et al. 2013). For wheat, global production

will need to be increased by 60% to meet the estimated

demand in 2050 (Ackerman and Stanton 2008). Additional

gains in productivity of small-grain cereals will continue to
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depend upon developments of new technologies and cereal

cultivars, and identifying and addressing the production

constraints associated with shifting climate patterns,

declining availability of certain fertilizer nutrients, salin-

ization of some currently irrigated land, reduced avail-

ability of water in some regions, and yield reductions

caused by biotic constraints including diseases, insect

pests, weeds, and nematodes.

Plant-parasitic nematodes are one of the main biotic

causes of plant stress and yield loss of wheat worldwide

(Nicol and Rivoal 2008). Globally, crop losses associated

with plant-parasitic nematodes are estimated at 12.6%,

representing annual monetary losses of 216 billion US $

(Nyaku et al. 2017). In Southern and Western Australia,

Root-lesion nematodes (RLNs) damage is estimated to

cause losses in the order of $190 million per annum. Actual

losses may even be higher because no data are available

from the many countries where nematologist expertise is

lacking. Moreover, yield losses due to nematodes are often

neglected because of lack of conspicuous aboveground

symptoms.

Global distribution of the root-lesion
nematodes

RLNs belonging to the genus of Pratylenchus rank second

behind the cyst nematodes in terms of their economic

importance in wheat production systems (Castillo and

Vovlas 2007). At least eight species of RLNs affect roots of

cereals (Rivoal and Cook 1993). Among them, P. thornei,

P. neglectus, P. penetrans, and P. crenatus have a world-

wide distribution, and sometimes coexist (Nicol et al. 2003;

Smiley and Nicol 2010).

The geographic distribution of RLN species depends

mostly on both the prevalence of host plants supporting

reproduction and abiotic factors (mainly temperature)

(Castillo and Vovlas 2007). In the Pacific Northwest of the

USA (Oregon, Washington, Idaho), RLN species have been

identified in more than 90% of dryland wheat fields with

predominance of P. neglectus and P. thornei (Smiley et al.

2004). In the northern grains region of Australia

(Queensland and northern New South Wales), the presence

of P. thornei and P. neglectus has been known since the

1960s and yield loss in wheat caused by P. thornei has been

demonstrated since the late 1970s (Thompson et al. 2008).

However, P. thornei is the predominant species of RLNs in

wheat and causes estimated annual losses of $33 million

(Brennan and Murray 1989). Recently, Thompson et al.

(2016) reported that the RLN (P. thornei) is a major

pathogen to wheat production in the subtropical northern

grain region of eastern Australia. Vanstone et al. (2008)

reported that both P. thornei and P. neglectus are the two

most important root-lesion nematodes affecting broad acre

crops in the southern cropping region of Australia. Al-

Banna et al. (2015) reported the presence of both P. thornei

and P. neglectus in different wheat producing regions in

Jordan. Several studies reported that the spring wheat

yields elsewhere in the world have been reduced by as

much as 32% by P. neglectus and 69% by P. thornei

(McDonald and Nicol 2005; Thompson et al. 2008). Sim-

ilar yield losses from these species have been reported for

spring wheat in Oregon (Smiley et al. 2005). Armstrong

et al. (1993) reported that the winter wheat yields were

reduced by 32% by P. thornei in Colorado. In the Isparta

province of Turkey, three Pratylenchus species (P. thornei,

P. neglectus, and P. scribneri) have been identified in

wheat (Sogut and Devran 2011). Yield losses due to P.

thornei are estimated at 20% on wheat in Turkey (Toktay

2008). In Iran, eight species of RLNs including P.

brachyurus, P. coffeae, P. crenatus, P. neglectus, P. pen-

etrans, P. pseudopratensis, P. thornei, and P. zeae were

reported from maize, wheat, barley, and rice (Pourjam et al.

1998). P. neglectus, P. thornei, P. pseudopratensis, and P.

penetrans were reported from wheat fields in Iran (Ghaderi

et al. 2010). Pourjam et al. (1999) reported that P. thornei

and P. neglectus are the most common species of RLNs in

Iran. P. penetrans also parasitizes wheat and barley,

resulting in yield loss of 10–19% in Canada (Nicol and

Rivoal 2008). In Morocco, RLNs are the most important

group of nematodes in different cereal-growing areas fol-

lowed by nematodes of the Heterodera avenae group

(Mokrini et al. 2012, 2017). Recently, Mokrini et al. (2016)

reported the presence of four species, viz. P. penetrans, P.

thornei, P. pinguicaudatus, and P. pseudocoffeae, in dif-

ferent wheat-growing areas of Morocco. Sikora (1988)

identified P. neglectus and P. penetrans in addition to P.

thornei on wheat and barley in Northern Africa and all

these as well as P. zeae in Western Asia.

Life cycle of the root-lesion nematodes

RLN species are migratory endoparasites (Moens and Perry

2009). All mobile life stages of RLN species are parasitic

as both adults and juveniles can penetrate, migrate, and

feed within roots (Bridge and Starr 2007). As is typical of

other plant-parasitic nematodes, RLN species develop

within the egg to the J1 that moults to J2, which then

hatches from the egg (Davis and MacGuidwin 2000). The

nematodes further moult through stages three (J3) and four

(J4) to become fully developed adults. Each subsequent

moult results in an increase in size and sexual development

(Luc et al. 2005). Mobile juveniles and adult stages can

enter and leave roots. They may become entirely embedded

within root tissue and migrate from cell to cell within that
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tissue and spend most of their life cycle in host plant roots,

but can also be found at the root surface and in adjacent

soil. Females can deposit eggs in the roots and in the soil

(Pudasaini et al. 2008). Eggs are released into the soil

during root degradation (Castillo and Vovlas 2007). Lesion

nematodes appear to be attracted to host roots, especially to

the region of root hair production and the root tip (Peng and

Moens 1999). There are differences in the sites and

mechanisms of root penetration by different species of

RLN in various hosts. P. penetrans explores the root by

rubbing its lip region along the surface of epidermal cells

and protracting its stylet enough to touch but not penetrate

the walls (Zunke 1990). In lucerne and clover, P. penetrans

preferred to penetrate the main roots where lateral roots

ruptured the cortex and migrated through the cortex of

main roots into lateral roots (Townshend et al. 1989). In

other studies, P. penetrans aggregated and penetrated in the

zone of root elongation of turf grasses (Troll and Rohde

1966). Castillo et al. (1998) found that both females and

juveniles of P. thornei penetrated the roots of chickpea

without any preference of site.

Pratylenchus thornei and P. neglectus are parthenogenic

(De Waele and Elsen 2002), i.e. females produce fertile

eggs without copulation with a male. By contrast, P. pen-

etrans is an amphimictic species, i.e. male and female must

mate before fertile eggs are produced. Populations of P.

penetrans therefore include nearly equal proportions of

males and females (Smiley and Nicol 2010). Long-term

survival under adverse conditions can occur at the egg

stage (Castillo and Vovlas 2007).

RLN can complete their life cycle in 45–65 days

depending on the species, the amount of available food

sources, temperature, host species, and moisture (Taylor

et al. 2000). The optimum conditions for development vary

with the species. Pratylenchus spp. can complete three to

six generations within the roots during one crop-growing

season (Taylor et al. 2000). On the basis of laboratory

observations, life cycle duration has been estimated for

several nematode–host plant combinations. The time

required to complete the life cycle varies considerably

depending on temperature and moisture. In red clover, P.

penetrans completed a generation in 54–65 days and pro-

duced 16–35 eggs per female at a rate of 1–2 eggs per day

at 24 �C (Turner and Chapman 1972). The generation time

of P. penetrans in vitro was estimated as 46, 38, 28, 26, and

23 days at 17, 20, 25, 27, and 30 �C, respectively (Mizu-

kubo and Adachi 1997). On carrot callus, the complete life

cycle of P. coffeae at 30 �C was 27–28 days, that of P.

penetrans at 24 �C was 34–35 days, and that of P. loosi at

20 �C was 45–46 days (Wu et al. 2002). Similarly, the life

cycle of P. thornei was completed in about 25–35 days on

carrot discs at 20–25 �C (Castillo et al. 1995).

Symptoms

Root lesions are the main symptoms on plants invaded by

RLN species, and they cause degradation of cells in the

epidermis and cortex of underground plant organs. This

reduces the amount of root branching and the ability of

roots to absorb water and nutrients (Smiley and Nicol

2010). Wheat roots infested with RLN display sloughing of

cortical and epidermal cells, degradation of lateral roots,

and loss of root hairs (Vanstone et al. 1998). Generally,

infected cereal roots are browning as lesions rapidly coa-

lesce to produce extensive areas of discolorations.

Aboveground symptoms are non-specific. Overall, affected

plants appear stunted with premature yellowing of older

leaves, reduced tillering, and lower weight (Smiley and

Nicol 2010; Castillo and Vovlas 2007). These symptoms

are often confused with nutrient deficiencies, drought, root

disease, or barley yellow dwarf (Taylor et al. 1999; Smiley

and Nicol 2010) or associated with other pathogens (Evans

and Haydock 1993). For instance, fields with high popu-

lations of RLNs often have plant canopies that are irregular

in height and maturation, as also occurs in plants affected

by Rhizoctonia root rot (Smiley and Nicol 2010). Pene-

tration of root tissues by RLN results in lesions that favour

greater colonization by root-rotting fungi and by sapro-

phytic bacteria, fungi, and nonparasitic nematodes (Moens

and Perry 2009). These secondary organisms cause more

intense rotting and discoloration than that caused by the

RLNs alone. Cortical degradation and reduced root

branching often are not visible until plants are 6 or more

weeks old, and these root symptoms are often confused

with those caused by Pythium or Rhizoctonia root rot

(Smiley and Nicol 2010). Colonization of Fusarium oxys-

porum in chickpea has been shown to increase with

increasing population density of P. thornei (Castillo et al.

1998). More root lesions can occur when P. neglectus-

infested wheat plants are co-infected with various fungal

pathogens, including Pythium irregulare, which causes

damping off, and Gaeumannomyces graminis, the agent

responsible for take-all disease (Taheri et al. 1994).

Differences in temporal developments of symptoms of

P. penetrans invasion were observed on different hosts. For

example, lesions in the proximal parts of the seminal roots

of wheat appeared only after 6 weeks after inoculation with

P. thornei (Baxter and Blake 1968). However, lesions on

strawberry roots appeared 17 days after inoculation when

inoculated with P. penetrans (Townshend 1963).
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Identification of root-lesion nematodes

RLNs contain 97 valid species distributed in temperate and

tropical environments (Handoo et al. 2008). Traditionally,

identification of RLN species based on morphology and

morphometrics of females and males (when present) is a

challenging task that demands considerable skills. How-

ever, diversity in morphology and morphometrics among

and within the species has been reported frequently as a

result of different environmental conditions, including host

plant (e.g. Román and Hirschmann 1969; Doucet et al.

2001). This morphological diversity makes diagnosing of

Pratylenchus species time-consuming and difficult to

achieve, especially in the case of mixed species popula-

tions (Mokrini et al. 2016). Nevertheless, accurate identi-

fication of Pratylenchus species is needed as an initial step

in designing effective control. This is especially important

when searching for potential source of host plant resistance

against RLN species.

Species-specific PCR

Within the last few years, nematode identification based on

morphology and morphometrics has been supplemented

with molecular observations. Waeyenberge et al. (2000),

De Luca et al. (2004), and Subbotin et al. (2006) demon-

strated that DNA-based methods provide efficient tools for

a precise and rapid identification of RLN species. PCR

using species-specific primers constitutes a major step

forward in the development of diagnostic technology,

which has successfully been used for sensitive detection of

RLN species. Several articles report the development and

use of species-specific primers for the molecular identifi-

cation of RLN species. Species-specific primers to detect

P. penetrans in a conventional PCR have been developed

(Uehara et al. 1998a; Al-Banna et al. 2004; Waeyenberge

et al. 2009). However, these primers are not suitable to

quantify the species. Many studies have been done for

molecular identification of P. thornei by species-specific

primers (Al-Banna et al. 2004; Carrasco-Ballesteros et al.

2007; Yan et al. 2008). Al-Banna et al. (2004) reported that

PNEG/D3B designed from the D2D3 expansion region of

28S rRNA discriminated P. neglectus from P. brachyurus,

P. scribneri, P. penetrans, P. thornei, and P. vulnus. The

primer set (PNEG-F1/D3B5) modified by Yan et al. (2008)

could also specifically identify P. neglectus in soil by

conventional PCR. Moreover, other species-specific pri-

mers were reported for detection of P. coffeae, P. loosi, P.

brachyurus, P. crenatus, P. zeae, and P. scribneri (Al-

Banna et al. 2004; Uehara et al. 1998b; Mekete et al. 2011).

Recently, Huang and Yan (2017) developed specific

detection of the root-lesion nematode P. scribneri using

conventional PCR.

Quantitative real-time PCR

The main objective of quantification of plant-parasitic

nematodes is monitoring the nematodes population for the

estimation of the damage threshold (Barker and Noe 1987).

The correct identification and quantification of RLN spe-

cies is a fundamental step in nematode control strategies.

However, the identification of RLNs based on morphology

and morphometric traits is time-consuming and requires

specialized skills. Moreover, RLN species are frequently

present in mixed populations, which make their identifi-

cation and quantification even more difficult. Therefore,

molecular tools are useful for the identification and dis-

crimination between species and for their precise quan-

tification. It was demonstrated that species-specific PCR

assays provide an efficient tool for an accurate, rapid, and

sensitive detection of P. penetrans or P. thornei (Uehara

et al. 1998a; Al-Banna et al. 2004; Carrasco-Ballesteros

et al. 2007; Yan et al. 2008; Waeyenberge et al. 2009).

However, none of the species-specific primers were

developed for quantification purposes, yet quantification is

very essential in breeding programmes and extension

activities. Recently, quantitative PCR (RTqPCR) strategies

have been developed for P. zeae (Berry et al. 2008), P.

neglectus (Yan et al. 2013), and P. thornei (Yan et al.

2012). RTqPCR allows continuous monitoring of the

sample during PCR using hybridization probes. Within this

region, the number of cycles needed to obtain fluorescence

above the background (Ct) is compared between samples

and standards with known quantities of DNA. These data

then can be used for quantification of the samples (King-

snorth et al. 2003).

More recently, a number of publications investigating

this technology for nematode enumeration have been

published. Sato et al. (2007) could detect a single P. pen-

etrans individual in a sample with an abundant number of

free-living nematodes using SYBR Green I-based RTqPCR

method. Mokrini et al. (2013) detected a single nematode

of P. penetrans when mixed with 80 individuals of P.

thornei. Yan et al. (2012) developed a real-time PCR

method for quantification of P. thornei from DNA extracts

of soil using primers designed from the internal transcribed

spacer region (ITS) of rDNA. Mokrini et al. (2014)

developed a real-time PCR assay for P. thornei using

sequences of the 1,4-endoglucanase gene and reported that

the developed assay was able to detect and quantify P.

thornei in mixed populations of Pratylenchus spp. where

visual identification of individual nematodes at species

level is extremely difficult. Sato et al. (2011) estimated the
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number of P. penetrans in the samples from different

radish fields using a RTqPCR assay. Qiu et al. (2007)

briefly reported a qPCR method for P. vulnus. Recently,

Huang and Yan (2017) developed a real-time PCR assay

for P. scribneri.

Management of Pratylenchus species
on wheat

The choice of management tactic to reduce damage caused

by root-lesion nematodes depends upon many factors. All

tactics require accurate diagnosis of the species and pop-

ulation levels of Pratylenchus as assessed from soil and

root samples taken from any given field. Action thresholds

vary among species of RLNs and crops depending upon

geographic location, crop value, and the potential for dis-

ease complexes (Davis and MacGuidwin 2000; Castillo

and Vovlas 2007). The damage thresholds of some species

of RLN associated with cereals were determined in several

studies (Table 1). Assessment of potential crop damage

caused by Pratylenchus is usually based on population

densities in soil at the time of planting, but also on densities

in roots during the growing season.

The main purpose of controlling RLN is to avoid having

significant yield losses. There are many reports about the

different methods to reduce population densities of RLN

(Thompson et al. 2009; May et al. 2016).

Cultural practices

Cultural methods offer some control, but are often of

limited effectiveness. To be of significance, they need to be

integrated with other control measures. The use of crop

rotation is a limited option for RLN, due to their poly-

phagous nature (Nicol and Rivoal 2008). Successful use of

rotation requires a thorough understanding of the effec-

tiveness of a particular rotation. Little information is

available about the role of crop rotation in controlling RLN

in wheat, although some field and laboratory work has been

undertaken to better understand the hosting ability of

cereals and leguminous crops to P. thornei and P. neglectus

(Vanstone et al. 1998; Lasserre et al. 1994; Nicol 1996).

Nevertheless, some effective rotations have been devel-

oped. For example, in Sonora (Mexico), populations of P.

thornei in wheat fields were reduced by rotations that

include corn, cotton, or soybean for 2 consecutive years

(Van Gundy et al. 1974). In Queensland (Australia), wheat

is rotated with the barley cv. Clipper to reduce populations

of P. thornei (O’Brien 1983; Owen et al. 2010, 2014;

Thompson et al. 2012a). Control of P. zeae has been

reported on rice by crop rotation with non-host crops such

as legumes, e.g. mung bean (Vigna radiata) and black gram

(Vigna mungo) (Prasad and Rao 1978). The principle for

the use of crop rotation to reduce RLN densities is that

monoculture of a host plant usually results in increased

population density and consequent yield losses (Castillo

and Vovlas 2007). However, some long-term monoculture

experiences indicate that monoculture may also reduce

RLN populations (Castillo and Vovlas 2007). Andersen

(1975) showed that P. crenatus and P. neglectus reached

highest numbers in the first 3 years of barley monoculture,

after which population densities decreased gradually and

stabilized at a lower level.

Di Vito et al. (1991) showed that the solarization of soil

with polyethylene film for 6–8 weeks in chickpea fields

reduced P. thornei populations by 50%. Tillage is often

considered as an option for control of soil-borne nematodes

(Haak et al. 1993; López-Fando and Bello 1995; Thompson

et al. 2010).

Other management practices are less effective in

managing RLN populations. Field sanitation during the

fallow phase is as important as during the in-crop phase,

because species of RLN multiply on many weed species in

the genera Avena, Brassica, Bromus, Malva, and Rumex

(Vanstone and Russ 2001). Smiley et al. (2004) reported

that the presence of susceptible weeds or crop species

between planted crops allows RLN to increase population

density over a greater interval of the cropping system. Van

Gundy et al. (1974) indicated that delayed planting to mid-

November in Sonora Mexico resulted in wheat plants

Table 1 Damage threshold densities of cereal–Pratylenchus combinations

Pratylenchus spp. Cereals Damage threshold (nematodes/cm3 soil) References

P. crenatus Oat 0.33 Barker and Olthof (1976)

P. neglectus Barley 1.5 Rivoal and Cook (1993)

P. thornei Wheat 0.5–1 Rivoal and Cook (1993)

P. thornei Wheat 0.42 Nicol and Ortiz-Monasterio (2004)

P. thornei Wheat 2.5 Thompson et al. (1993)

P. thornei Wheat 3 Nicol et al. (1999)
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growing in soil\ 15 �C such that nematode reproduction

was slowed and the wheat gained a competitive advantage.

This concept was extended by modelling an optimum time

of sowing wheat in the subtropical grain region of eastern

Australia such that P. thornei reproduction was limited by

lower soil temperatures (Thompson 2015).

Fertilization with inorganic sources of nitrogen has also

been observed to modify populations of Pratylenchus spp.

Dmowska and Ilieva (1995) reported that RLN species

were more abundant in plots of barley fertilized with

nitrogen over 22 years than in non-fertilized plots.

Resistance and tolerance

The use of resistant and tolerant cultivars is considered the

most economically and environmentally acceptable means

for control of RLN (Castillo et al. 1998). RLN species

readily multiply on a susceptible wheat cultivar to high

population densities, which decrease wheat growth and

yield; on a resistant cultivar, the reproduction is much

reduced with less yield loss. By contrast, a tolerant cultivar

still has the capacity to grow and yield well in the presence

of high numbers of nematodes (Thompson et al. 1999). The

first source of superior tolerance to P. thornei in wheat

lines was identified through targeted screening of cultivars.

Tolerant cultivars such as Pelsart (Brennan et al. 1994),

Sunvale (Ellison et al. 1995), and Baxter (Thompson et al.

1999) were used to minimize the effects of RLNs. These

tolerant lines offered a 30% yield increase compared to

other commercial cultivars available at the time (Thomp-

son et al. 1995). Ideally, the resistance should be combined

with tolerance. The most detailed research on breeding for

tolerance and resistance to Pratylenchus spp. has been

carried out in Australia, where it was shown that a tolerant

wheat variety grown in nematode-free fields or after

nematicide treatment is a good option for controlling RLN

(Thompson et al. 2008). The soil-borne pathogen pro-

gramme at CIMMYT Turkey annually screens about 1000

accessions of wheat from the CIMMYT Mexico spring

wheat programme and the Turkey—CIMMYT—ICARDA

International Winter Wheat Improvement Program (www.

iwwip.org) under growth room, greenhouse, and field

conditions at various locations in Turkey. Cultivars are also

screened for multiple disease resistance, such as resistance

to different species of root-lesion nematodes (e.g. P.

thornei and P. neglectus) (Toktay et al. 2013) and the most

resistant lines then distributed to international collaborators

to be used in their breeding programmes.

Many sources of resistant wheat germplasm have been

reported for RLN (Thompson and Haak 1997; Taylor et al.

2000; Toktay et al. 2012). Resistance in wheat against P.

thornei (Vanstone et al. 1998; Thompson et al. 1999, 2009)

and P. neglectus (Thompson et al. 1989) has been identi-

fied. In Australia, the first significant source of resistance to

P. thornei was the bread wheat line GS50a selected from a

severely infested field of the variety Gatcher (Thompson

and Clewett 1986). Thompson et al. (1999) showed that

this line reduced RLN reproduction by more than tenfold.

Sheedy and Thompson (2009) investigated 274 accessions

of Iranian wheat landraces and identified 25 accessions that

were more resistant than ‘GS50a’. Thompson et al. (2009)

found additional sources of P. thornei resistance from

screening wheat accession collections from West Asian

and North African regions.

Resistance to P. neglectus has been investigated less

than resistance to P. thornei because the latter species is the

most frequent RLN detected on cereals in the world. For P.

neglectus, the resistant locus, (Rlnn1) located on chromo-

some 7AL and originating from the Australian variety

‘Excalibur’, has been identified and validated (Williams

et al. 2002). As both RLN species are often found in the

same field in mixed populations (Thompson et al. 2010),

the development of wheat cultivars with resistance to both

species is desirable. However, it should be noted that wheat

cultivars with resistance or tolerance to P. thornei are not

necessarily resistant or tolerant to P. neglectus and vice

versa, since resistance and tolerance to each species is

genetically independent (Smiley and Nicol 2010); this

probably also applies to other species that infest wheat.

Molecular markers can provide evidence to address

fundamental questions on the genetics of root-lesion

nematodes resistance in wheat and to assist in breeding for

nematode resistant wheat cultivars. Several advancements

have occurred in marker and QTL analysis technology in

the last decade since the last reported RLN species resis-

tance QTL in wheat. These advancements can be used in

genetic mapping to uncover the number of genes involved

in resistance and to understand the genetic mechanisms of

how the resistance to nematode invasion is conferred by

each gene. Several studies showed that resistance to RLN is

inherited in a quantitative manner (Thompson and Sey-

mour 2011; Thompson et al. 2012b; Dababat et al. 2016).

Resistances to RLN have been reported in accessions of

wheat by several researchers (Sheedy and Thompson 2009;

Mokrini et al. 2018). Many putative quantitative trait loci

(QTL) for RLN resistance were identified (Table 2).

Conclusion

Accurate identification of the nematode species present in

the field and knowledge of their population density are

essential when designing effective control measures. As is

common for other nematode species, RLN species are

traditionally identified on the basis of their morphology and
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morphometrics. Unfortunately, this is time-consuming and

hardly applicable when species mixtures need to be iden-

tified and quantified. PCR-based DNA analysis is powerful

to detect, distinguish, and identify species of RLN, and it

can be an excellent tool complementing the traditional

identification. The control of RLN diseases is achieved

using different approaches, including cultural practices,

crop rotation, and genetic resistance and tolerance. The use

of resistant cultivars, i.e. cultivars that have the capacity to

prevent or reduce nematode multiplication, is considered

one of the most effective and economical methods for

managing nematodes in different cropping systems

including rainfed and irrigated areas.
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